International Standard INTERNATIONAL ORGANIZATION FOR STANDARDIZATION●MEЖДУНАРОДНАЯ OP/АНИЗАЦИЯ ЛО CTAHДАРТИЗАЦИИ●ORGANISATION INTERNATIONALE DE NORMALISATION # Straight-sided splines for cylindrical shafts with internal centering - Dimensions, tolerances and verification Cannelures cylindriques à flancs parallèles, à centrage intérieur - Dimensions, tolérances et vérification Second edition — 1982-10-01 UDC 621.824.4 Ref. No. ISO 14-1982 (E) Descriptors: shaft (machine elements), cylindrical shaft, splines, straight-sided splines, dimensions. # Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing international Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. International Standard ISO 14 was developed by Technical Committee ISO/TC 32, Splines and serrations, and was circulated to the member bodies in June 1980. It has been approved by the member bodies of the following countries: | Australia | Germany, F. R. | Romania | |----------------|----------------|-----------------------| | Austria | India | South Africa, Rep. of | | Belgium | [reland | Spain | | Brazil | Italy | Sweden | | Czechoslovakia | Japan | United Kingdom | | France | Korea, Rep. of | USSR | The member body of the following country expressed disapproval of the document on technical grounds: # China This second edition cancels and replaces the first edition (i.e. ISO 14-1978). International Organization for Standardization, 1982 Printed in Switzerland 14-82 # Straight-sided splines for cylindrical shafts with internal centering — Dimensions, tolerances and verification # Scope and field of application This International Standard lays down dimensions, in millimetres, of straight-sided splines for cylindrical shafts with internal centering, light series and medium series. This International Standard also specifies control methods and corresponding gauges. # 2 Dimensions The nominal dimensions common to shaft and hub, d, D and B are given in table 1. The tolerances are indicated in tables 2 and 3. # 3 Designation The profile of a splined shaft or hub shall be designated by stating, in the following order: the number of splines N, the minor diameter d and the outside diameter D, these three numbers being separated by the sign \times ; for example : Shaft (or hub) $6 \times 23 \times 26$ Table 1 - Nominal dimensions | | Light se | les | | | Medium se | ries | | | |-----------|-------------------------|-----|---------|---------|-------------------------|------|----------------|---------| | d —
mm | Designation | N | D
mm | B
mm | Designation | N | <i>D</i>
mm | B
mm | | 11 | | 1 | | | 6 × 11 × 14 | 6 | 14 | 3 | | 13 | | 1 | | | 6 × 13 × 16 | 6 | 16 | 3,5 | | 16 | | | | | $6 \times 16 \times 20$ | 6 | 20 | 4 | | 18 | | | | | 6 × 18 × 22 | 6 | 22 | 5 | | 21 | | İ | | | 6 × 21 × 25 | 6 | 25 | 5 | | 23 | $6 \times 23 \times 26$ | 6 | 26 | 6 | 6 × 23 × 28 | 6 | 28 | 6 | | 26 | $6 \times 26 \times 30$ | 6 | 30 | 6 | 6 ×. 26 × 32 | 6 | 32 | 6 | | 28 | 6 × 28 × 32 | 6 | 32 | 7 | 6 × 28 × 34 | 6 | 34 | 7 | | 32 | 8 × 32 × 36 | 8 | 36 | 6 | 8 × 32 × 38 | 8 | 38 | 6 | | 36 | $8 \times 36 \times 40$ | 8 | 40 | 7 | 8 × 36 × 42 | 8 | 42 | 7 | | 42 | 8 × 42 × 46 | 8 | 46 | 8 | . 8 × 42 × 48 | 8 | 48 | 8 | | 46 | 8 × 46 × 50 | 8 | 50 | 9 | 8 × 46 × 54 | 8 | 54 | 9 | | 52 | · 8 × 52 × 58 | 8 | 58 | 10 | 8 × 52 × 60 | 8 | 60 | 10 | | 56 | $8 \times 56 \times 62$ | 8 | 62 | 10 | 8 × 56 × 65 | 8 | 65 | 10 | | 62 | 8 × 62 × 68 | 8 | 68 | 12 | 8 × 62 × 72 | 8 | 72 | 12 | | 72 | 10 × 72 × 78 | 10 | 78 | 12 | 10 × 72 × 82 | 10 | 82 | 12 | | 82 | 10 × 82 × 88 | 10 | 88 | 12 | 10 × 82 × 92 | 10 | 92 | 12 | | 92 | 10 × 92 × 98 | 10 | 98 | 14 | 10 × 92 × 102 | 10 | 102 | 14 | | 102 | 10 × 102 × 108 | 10 | 108 | 16 | 10 × 102 × 112 | 10 | 112 | 16 | | 112 | 10 × 112 × 120 | 10 | 120 | 18 | 10 × 112 × 126 | 10 | 125 | 18 | # 4 Tolerances on holes and shaft Table 2 - Tolerances on holes and shafts | | T | olerance | s on hol | ө | ······ | | | | | |----|------------------------|----------|----------|----------------------|--------|-------|----------|-------|---------------| | | ot treate
er broach | | afte | Treated
or broack | | Toler | ances on | shaft | Mounting type | | В | D | d | В | D | d | В | D | d | | | H9 | H10 | H7 | H11 | H10 | H7 | d10 | a11 | f7 | Sliding | | | | | | | | f9 | a11 | g7 | Close sliding | | | | | | | | h10 | a11 | h7 | Fixed | The dimensional tolerances on holes and shafts are given in table 2, whilst table 3 indicates tolerances on symmetry. With certain milling cutters, it is possible for special applications to produce splines without bottom tool clearance with a very reduced fillet radius between the spline side and the minor diameter d (for example, milling cutters with fixed working positions). The tolerances in table 2 above relate to entirely finished workpieces (shafts and hubs). Tooling should therefore be different for untreated workpieces or workpieces treated before machining and for workpieces treated after machining. Table 3 — Tolerances on symmetry Dimensions in millimetres | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |-----------------------------|---|----------------|----------------|----------------|---| | Spline
wldth | В | 3 | 3,5 4 5 6 | 7 8 9 10 | 12 14 16 18 | | Tolerance
of
symmetry | 1 | 0,010
(IT7) | 0,012
(IT7) | 0,015
(IT7) | 0,018
(IT7) | The tolerance specified on \boldsymbol{B} includes the index variation (and the symmetry variation). For alignment errors, see 5.7. #### 5 Gauging # 5.1 General This clause gives general information concerning gauges and gauge control; all the other requirements concerning gauges are given in clause 6 for the case where limit gauges are used, which is not compulsory. Direct measurement gauging can be permitted by previous agreement between the parties concerned according to rules to be defined to the best of requirements. # 5.2 Reference temperature The standard reference temperature of industrial measurements is 20 °C. The dimensions prescribed for parts and gauges are measured at this temperature and shall normally be checked at this temperature. If measurements are carried out at a different temperature, the result shall be corrected taking account of the linear expansion coefficients of workpieces and gauges respectively. Unless otherwise specified, measurements are understood with reference to a zero measuring force. If measurements are carried out with a measuring force differing from zero, the results shall be corrected consequently. Correction however is not required for comparative measurements carried out using the same means of comparison and the same measuring force between similar elements of the same material and surface finish. # 5.3 Conditions of application A workpiece is conventionally acknowledged good when its splines are found satisfactory using gauges according to the requirements of clauses 5 and 6 of this International Standard which are authoritative for gauging. Consequently, if the customer uses his own gauges for acceptance purposes, they shall be close enough to the external limits prescribed not to reject splines already accepted by the manufacturer's gauges. In the case of dispute, both the manufacturer and customer should make their gauges available to each other for checking at their respective sites. In the event of continuing dispute the gauges shall be referred to a recognized calibration authority. # 5.4 Shaft gauging #### 5.4.1 GO side Shaft gauging on the GO side is carried out using a spline GO ring gauge simultaneously checking those characteristics relating to: #### **5.4.1.1** fitting, i.e. : spline minor diameter. #### 5.4.1.2 mounting, i.e. : - spline major diameter; - spline thickness; - major and minor diameter concentricity; - spline angular position; - spline position and orientation with respect to the axis.¹⁾ #### 5.4.2 NOT GO side Shaft gauging on the NOT GO side is carried out using segmental NOT GO gauges checking each element separately, i.e. : - for spline major diameters : a calliper gauge or a plain ring gauge; - for spline minor diameters: a calliper gauge (with appropriate special anvils, if necessary); - for spline thicknesses: a calliper gauge (of appropriate external shape if necessary). #### 5.5 Hole gauging #### 5.5.1 GO side Hole gauging on the GO side is carried out using a spline GO plug gauge simultaneously checking those characteristics relating to: # **5.5.1.1** fitting, i.e: spline minor diameter. #### 5.5.1.2 mounting, i.e: - spline major diameter; - spline space width; - major and minor diameter concentricity; - spline angular position; - spline position and orientation with respect to the axis.¹¹ #### 5.5.2 NOT GO side Hole gauging on the NOT GO side is carried out using NOT GO segmental gauges checking each element separately, i.e.; - for spline minor diameters: a cylindrical plain plug gauge; - for spline major diameters: a cylindrical plate gauge with appropriate measuring faces; - for spline space widths : a plate gauge. # 5.6 Additional gauging Workpiece (hole or shaft) gauging on the GO side by means of spline (plug or ring) gauges does not make it possible, if a workpiece is rejected by the gauge, to determine which element of the workpiece has provoked rejection. In case such indications are required, they may be obtained by additional gauging (to be prescribed explicitly) using segmental gauges controlling each element separately on the GO side. # 5.7 Influence of active length and engagement length Length of engagement g_{γ} : The axial length of contact between mating splines. Active length $g_{\rm w}$: The maximum axial length in contact (when working) with the mating spline. For sliding splines, the active length exceeds the length of engagement. ¹⁾ Spline position and orientation with respect to the axis need be verified only where gauges are lacking, #### a) Shaft longer than hole # b) Hole longer than shaft #### Figure - Active length and engagement length As gauges are generally smaller than gauged workpieces, the active length and length of engagement can influence the maximum permissible errors of alignment of splines (errors of parallelism of splines with respect to the axis). If the active length is equal to the length of engagement, spline alignment errors will in general and unless otherwise specified be included in dimensional tolerances and checked simultaneously. If the active length is longer than the length of engagement, it might be necessary to prescribe spline alignment errors independent of dimensional tolerances; such tolerances may then be checked separately, for example, by direct measurement. If spline alignment tolerances are to be prescribed, it shall be considered that they must generally be all the smaller as the active length is longer. # 5.8 Conditions of use of gauges #### 5.8.1 GO side GO gauges (spline ring or plug gauge) shall slide without clearance over the whole length of the gauged workpiece under their own weight or in accordance with a fixed working load, gauging being carried out at three angular positions at least, evenly distributed over the surface. The gauge may be moved slightly to and fro in order to minimise the effects of friction. #### 5.8.2 NOT GO side NOT GO segmental gauges are used in the same way as gauges intended for plain workpiece checking. Gauging is carried out at all angular positions. #### 5.9 Gauge control #### 5.9.1 GO side GO gauges are normally controlled by direct measurement. #### 5.9.2 NOT GO side NOT GO segmental gauges are controlled under the same conditions as gauges for plain workpiece gauging. # 6 Definitions of gauges #### 6.1 General This clause defines the positions and values of tolerances for GO and NOT GO gauges and their permissible wear limits on the GO side. It also specifies the length of gauge measuring parts. The general indications concerning gauges and gauge control are given in clause 5. #### NOTES - 1 When gauges are manufactured at the maximum material limit, they shall not present form errors outside permitted tolerances. - 2 To limit the number of gauges, only one GO spilne plug gauge is provided to check the minimum limits of hub dimensions (whether treated or not after broaching). - 3 In the following texts, the phrase zero gauge line has been used to designate the theoretical line from which GO gauges are positioned in analogy with the zero assembly line (nominal dimension). The position of the "zero gauge line" has been determined as a function of workpiece limits at the maximum material condition, in order to satisfy assembly and operation requirements taking account of the fact that GO gauges are not segmental gauges but full form gauges. The "zero gauge fine" is in some cases coincident with the zero assembly line (or nominal dimonsion of assembly). 4 In conformity with clause 4, the minor diameter serves for workpiece fitting. This diameter has therefore been taken as reference for the control of geometrical defects on other elements (i.e. the other diameter of width B of splines). In this context the phrases dimensions for fitting and dimensions not ensuring fitting have been used to designate the various elements. #### 6.2 Basic principles # 6.2.1 GO gauges GO gauges are full form gauges checking spline minor diameter d_i major diameter D and width B simultaneously. **6.2.1.1** GO gauging of dimensions for fitting (minor diameter d) For GO gauging of minor diameter d ensuring fitting, the values and positions of dimensional tolerances of hole or shaft gauges, the wear limits and form tolerances shall conform to the requirements of ISO/R 1938, ISO system of limits and fits - Part 2 : Inspection of plain workpieces. 6.2.1.2 GO gauging of dimensions not ensuring fitting #### 6.2.1.2.1 Position of zero gauge line For GO gauging of major diameter D not ensuring fitting the zero gauge line common to both shaft and hole is located at mid-distance between shaft and hole at the maximum permissible material condition of the workpieces concerned. For GO gauging of width B, the three cases considered in clause 4 shall be taken into account, i.e. sliding, close sliding or fixed type mounting. #### a) Sliding type mounting: The zero gauge line common to both shaft and hole is located as in 6.2,1,2.1 at mid-distance between shaft and hole at the maximum permissible material condition of the workpieces. # Close sliding type mounting: The hole gauge (plug gauge) is the same as for sliding type mounting gauging and the hole zero gauge line therefore lies in the same position. For the shaft gauge (ring gauge), the zero gauge line is located on the zero line (nominal dimension), without taking into account mid-distance between shaft and hole at the maximum permissible material condition of the workpieces. # c) Fixed type mounting: The hole gauge (plug gauge) is the same as for sliding or close sliding type mounting gauging and the hole zero gauge line therefore lies in the same position. For the shaft gauge (ring gauge) the shaft zero gauge line is located with respect to the shaft maximum permissible material condition (nominal dimension) above the limit at a distance equal to that retained for sliding type mounting, 6.2.1.2.2 Values and positions of tolerances and wear limits for GO gauging of dimensions not ensuring fitting. The values of dimensional tolerances for hole or shaft GO gauges correspond to values of grade 6 and include both dimensional and form errors (namely concentricity, symmetry, angular position, helix, alignment, etc.). The deviations between the zero gauge lines as defined in 6.2.1.2.1 and the values of grade 6 quantities closest to zero lines correspond to grade 4 values. Gauge wear limits coincide with above-mentioned zero gauge # 6.2.2 NOT GO gauges NOT GO gauges are segmental gauges checking spline minor diameter d, major diameter D or width B separately. For NOT GO gauging of each element separately, the values and positions of gauge tolerances shall conform to the requirements of ISO/R 1938, ISO system of limits and fits -Part 2 : Inspection of plain workpieces. - 6.3 Tables of tolerance positions and values (for hubs, shafts, GO gauges and NOT GO gauges; see tables 4, 5 and 6) - 6.3.1 Tolerances of symmetry and tolerances of backlash of the major diameter D_1 with respect to the minor diameter d_1 Plug gauge i.e, half the deviation allowance.1) 1) The deviation allowance is simply labelled "deviation" in tables 4, 5 and 6. # 6.3.2 Tables for fitting and not fitting diameters and for spline widths Table 4 - Diameter for | | | | | > | 10 to 1 | 8 mm | | | | | | | | | | > 1 | 8 to 3 | 30 mn | 1 | | | | | | | | | > | 30 t | o 50 i | mm | | | | | |-------------|----------------|------------------|--|-----------------------|----------------|-----------|--|--------------------|-------------|---------------------------|--------------------|--|----------------|------------------|-------------|-------------------------|--------------------|---------------|---|--------------------|---|------------------------|--------------------|--|----------------|--------------------|------------------------|-----------------------|-----------------------|-------------|-----------------------------------|--------------------|--------------------|---------------------|--------------------| | ŀ | fale
Ge | เนลูอ | п | Fixe
type
nount | • | . s | haft
Nose
liding
type
suntin |
6 | | ilidini
type
puntii | | ł | (ola | nāe | m | Fixed
type
counti | | | Shaft
Close
sliding
type
ountir | ı | Ŀ | tidin
type
sunti | | | lo le | 1189 | | Fixed
type
ount | • | , | Close
sliding
type
ounti | g | | Slid
typ
mour | pe _ | | HID. 1 M3X. | GO – full form | NOT GO segmental | min. – max. | GO – full form | GO — segmental | min, max. | GO — full form | NOT GO — segmental | min. – max. | GO — full form | NOT GO — segmental | тыл, — тах. | G0 — full form | NOT GO segmental | min. – max. | G0 — full form | NOT GO — segmental | min. ¬ max. | GO — full form | NOT GO — segmental | min, — max. | GO — full form | NOT GO — segmental | min, — max, | GO – full form | NOT GO — segmental | min. – max. | GO – full form | NOT GO — segmental | min. ∸ max. | GO – full form | NOT GO — segmental | min. – max. | GO — full farm | NOT GO — segmental | | 15 | | 2 25 🖶 | -18 15 15 15 15 15 15 15 15 15 15 15 15 15 | .15 Wear limit | gauga aidin | | unting | | ↑ | | #15_1 1 1.5 | 25 1 20 THE TO T | Deviation 2 2 | | 0 21 -21 | 2 1 2 = 1 | 97 = 2 + 2 | 5 - 1 57 - 28 | 7 | | <u> </u> | → 3 □ | 2 2 | 2 33 0 0 1 2 2 2 2 2 2 2 2 3 3 3 4 3 4 3 4 3 4 3 4 | | <u>37 + 1−37 </u> | <u>ခြေးမ</u> ှုနှော်ဗု | 2 2 | 97 🖮 2-111-1 2 | 35 | 2 15 | 2 1112 | <u> </u> | 75/ | 2 2 | Example of reading for (hole) GO gauge for dimensions > 18 to 30 mm # fitting - Minor diameter | | Hola | | | > 5
Fíxed
type
ounti | ı | ٠, | Shafi
Close
sliding
type
ounti | ¥ | | Sliding
type
ounti | | F | łole | | | > 80
Fixed
type
ounti | · | | n
Shat
Close
slidin
type
ounti | e
g . | | Sildin
type
ounti | _ | £4 | lole | | [| > 1
Fixed
type
puntin | | 9 | Sha
Close
eliding
type
countin | . | | Slidi
typ
Moun | e | |----------------|----------------|--------------------|------------------------|-------------------------------|-------------------------|-------------|--|--------------------|-------------|--------------------------|--------------------|---------------------|----------------|--|---------------------------------------|--------------------------------|----------------------|--|---|----------------------|-------------|-------------------------|--------------------|-------------|----------------|--------------------|-------------------|--------------------------------|---|---|--|--------------------|-------------|---|--------------------| | nik. — mex. | GO — full form | NOT G0 — segmental | min. — max. | GO — full form | NOT GO – segmental | min. — mæx. | GO — full form | NOT G0 — segmental | тіп, — тах. | GO — full form GO — | NOT GO — segmental | min, — max. | G0 — full form | NOT G0 — segmental | min, — mjax. | G0 — full form | NOT GO – segmental & | min. – max. | G0 — full form | NOT GO — segmental B | min. — max. | GD — full form | NOT GO — segmental | min, — max, | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT G0 – segmental | min. — max. | GO — full form B | NOT GO — segmental | min. — max. | GO — full form | not GO — segmental | | 30 Market 1977 | | 25 25 | y == h7 == 0 2.5 1 2.5 | 25_4 - 25 mm Li | <u>g7</u> == 2.5 | | 25 1 2.5 | 2.5 1 2.5 | | | 25 1 2.5 | 2.5 2.5 4 3 9 9 9 9 | - | —————————————————————————————————————— | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | 97 = 3 | 7 12 12 12 12 12 12 12 12 12 12 12 12 12 | 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | -36-1 | | 3 64 0 | | 9 7 | † † † o = 1/4 = 3 | | 7 T T T T T T T T T T T T T T T T T T T | 1 | | | 88 | φ = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 | | Table 5 - Diameter not | (Tole | rances | in mi | icrom | etres} | , | |---|----------------|--------------------------|---------------|--|--------------------------|----------------|----------------|--------------------|-------------|----------------|--------------------|-------------|----------------|--------------------|-------------|----------------|--------------------|-------------|----------------|------------------------|--------------|----------------|--------------------|---|----------------|--------------------|---| | | > | 10 to | 18 m <i>i</i> | n | | | > | 18 to | 30 m | m | | | > | 30 to | 40 n | ım | | | > | 40 to | 50 m | ım | | > | - 50 t | o | | | | Hole | | | Shaft | t | | Hole | | | Shaft | | | Hole | | | Shaft |
t | | Hole | | | Shaft | : | | Hole | I | Г | | | Gau | ıge | | Ga | uge | | Gau | ıge | | Gau | ıge . | | Gau | ıge | | Gau | uge | | Gai | uge . | | Ga | uge |] | Ga | uge | 1 | | min. – max. | GO – full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | тіп. — тах. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO - segmental | min. — max. | GO — full form | NOT GO — segmental | min. – max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | | | +70 | 1,5 | | | | | 84
 | 2-1-2 | | Zər | o asse | embly | 100 H 10 | nomi | al dir | mens | ions) | | H10 | 2 - 2 | 7/21
23/23
23/23 | | | | 420
01 H | 2.5 | | | | 10 21 155 11 15 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 105 = 174 + 1 <u>7</u> 6 | | Let the the the tension of tensi | <u>\$105 - 174 + 176</u> | 0 5.0 1 5.0 E. | | Deviation 12.5 | 59 1 59 3 4 | | 12.5 | 8 155 | | 15 | | 55 55 | 15 | 0 8 | | 15 | -320
-480 | 5,5=++=5,5 | 15 | 0 5% - 5% - 5% - 5% - 5% - 5% - 5% - 5% | | 17.5 | | Example of reading for (hole) GO gauge for dimensions $>\,40$ to 50 mm ensuring fitting - Major diameter | | | | | | | | | · | | | | | | | _4∏ | <u> 1-16</u> | <u>0</u> | | | | | | | | | | | |---|-----------------------|----------------|--------------------|-------------|----------------|--------------------|-------------|----------------|------------------|-------------|----------------|--------------------|-------------|----------------|------------------|---------------|----------------|--------------------|---|----------------|--------------------|--------------|----------------|--------------------|-------------|----------------|--------------------| | | (| 35 mn | n | | > | 65 to | 80 mi | m | _ | | > | 80 to | 100 п | nm | | | > | 100 to | 120 n | nm
- | | | > | 120 to | 125 r | nm | | | - | | Shaf | | | Hole | | | Shaft | | | | | Ģa | uge
78 | | Ga | nge | i | - Gai | uge
Ta | | Ga | uge | - | Ga | uge
Læ | | Ga | uge | | Gai | uge | | Ga | uge | | Gau | | | | min. — max. | GO – full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO - segmental | min. ← max. | GO — full form | NOT GO segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO segmental | min. — max. | GO – full form | NOT G0 — segmental | min.— max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | | | | | | | 2.5 | | | j · | | +140 | 2 | - | | | | +140 | E | | | | | +160 | 7 | | | | | | | , min | | - | 420
0. H | 25 | | | | | H 10 | <u>.</u> | | | | | H 10 | 1 | | | | | H 10 | 7. | | | | | | | | ſ | Z | ero ga | uge li | ne for | shaf | t and l | hole a | nd we | ar lim |)
hit | | | | 0 | | | | | | 0 | | | | | | | | - S22 | | 17.5 | 56 180 | | 17,5 | <u>2</u> 6€ | | 17.5 | 1190 | | 21 | <u></u> | | | 11 11 | | 21 | | -, | * | 12,5 1 12,5 | | 24.5 | | | | | | ■8 9.5 -11 | | • | | | | 360 | | | | | | <u>=</u> | | 7 | <u>-205</u> | | 4 | | | 21 | <u>₹</u> 230 | | + | 2,5 | | 24,5 | | | Seminari IIII | <u>5′9</u> | | | | | -550 | | | | | | 380 | | | | | | 49 | | | | | | 71 46 | | | | | -530 | 6,5 | | | | | | 6,5 6,5 | | | | | | 7,5 | | | | | 4 TO THE TOTAL OF | 17.5 | | | | | 46 | | | | | | | | | | | | | | , | | | 300 | 2,7 | | | | | -630 | 7.5 | | | | | 710 | 1 4 1 | | | | | | | | | | | | | - | | | | <u> </u> | | | | | | | | | | | ļ | 6 | | Table 6 - Widths of splines - Sliding, | | | | | < to | 3 mm | | | | | | | | | | | > 3 | to 6 n | nm | | | | | | |---|----------------|---|-------------|--|--------------------|----------------|---|--------------------|--------------------------|-------------------------|--------------------|-------------|----------------|--------------------|-------------|------------------------|--------------------|-------------|--|--------------------|---------------------|--------------------------|--------------------| | Но | le | | | Fixed
type
ountir | | ş | Shaft
Close
sliding
type
ountil |) | | Siidin
type
ounti | | H | ole | | | Fixed
type
ounti | | | Shaf
Close
sliding
type
rounti | 9 | | Slidin
type
tounti | - | | | Gau | (ge | | Gau | 18e | | Gai | ığe | | Ga | uge | | Gae | ıge | | Ga | uge | | Gau | ıge | | Ga | uge | | min. — max. | GO — full form | NOT GO – segmentaì | min. — max. | GO — full form | NOT GO - segmental | min. – max. | GO — full form | NOT GO — segmental | min. — max. | G0 — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO - segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | min, — max. | GO — full form | NOT GO — segmental | | | | | | [_[; | 7ero (| eeen | nhlv | line (| nomii | nal di | mens | ions) | Γ | z | | uge li | | | | l
nit | | | | | | | ſ | | | | | Zero g
for clo | jauge
Ise s | e line
Iding | and
type | wear
mot | limit
Inting | | | 255 | d type | mou | nting |)
 | | | | | | | | 50
上
上
上
上
上
上
三
三
三
三
三
三
三
三
三
三
三
三
三 | <u>, -, -</u> | # Z + 1/1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 | Deviation | 17. 2
17. 17. 17. 17. 17. 17. 17. 17. 17. 17. | | | l _a | 6 1 4 + 2 | 9ÎÎ ⁺ 케니 : 카드 | , | | +75 H1H | 1.25 1.25 25 | | _ | | | 10 | | 8 | 1-15]
0 - | | 77 | | | 176 | Deviation 5 | | 176.24
-14-4-1- | Deviation | -31 | | | 0. u 40 | | Deviation 1 | 0 0_ | | 8 | -70 -78 | 1,25 | 7 | 2000 | 1,25 1,25 | | 301 (1 × 3) (2 × 3) | 1,25 1,25 | 7 | | Zei | o gau | ge lin | e and | wear | ∦mit | for a | stiding | g typ | e moi | untin | g | | | | | 1,25 | ¹⁾ For the close sliding mounting, the wear limit of GO gauges (of shaft) has been located at the nominal dimension, without taking the deviation/2 into account. 113 **Example of reading** for (hole) GO for dimensions ≤ 3 (sliding or fixed)¹⁾ # close sliding or fixed type mounting | Н | ole | | _ 1 | > 6 t
Fixed
type | | | Shaft
Close
Ilding | | | Slidin
type | | H | ole | | | > 10 t | | l | Shef
Close
slidin | 9 | | Slidin
type | | |-------------|----------------|--------------------|-------------|------------------------|--------------------|----------------|--------------------------|--------------------|--|---------------------------|--------------------|-------------|------------------|--------------------|--------------|----------------|--------------------|-------------|-------------------------|--------------------|-----------------|----------------|--------------------| | | | | mo | ountir | | m | type
ountir | | l m | ounti | | | _ | | m | ountir | _ | m | type
ounti | ng | m | ounti | | | | Ga | ntal
agu | | Gad | | : | Gau | - | | Ga
—— | uge
Igu | | Gad | | | Gau | | | Ga | egu
egu | | Ga | uge | | min. — max. | GO — full form | NOT GO — segmental | min. — max. | 60 — full form | NOT GO — segmental | тіп. — тах. | GO — full form | NOT GO — segmental | min. — max. | GO – full form | NOT GO - segmental | min. – max. | . GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | min. — max. | GO — full form | NOT GO — segmental | | | | | | | | | | | | | | | 7,■ | | | | | | | : | | | | | no. | m | | | | | | | | | | | +110 | | | _ | | | | | : | | | | | 98 | _ | | - | | | | | | , | | | | 7 | | | | | | | | | | | | | ' | | | | | | | | | | | 11.11 | 1,5 | | | | | | | | I | | | | +36 | 1,25 | | | | | | | | 8,5 | | ري
ا | +43 | _ | | . ! | | : | | | | 10,5 | +25 | 5.5 | | #6H/-3% | [2] | -
- | | | | 8,5 | | 4.5 | -
0 | ∓ 20]
-⊞ | 7.5 | H 97 | ₩. | 5.5 | | | | 10.5 | | 5,5 | - | | | | 0 0 | | | 8,5 | | 4.5 | -13 | | | | | 51 | 0 0 | | - | 70,5 | - | 55 | -161 | | | Ì | | 53 | | | ı. | 85 | 3 | | | -4
-4
-3 | 1,25 | 7 | in No | 25 | | -25
-2°) | | 5,5 | | | | 11111163 | اما | 55 | -0. u | | | | | | | | | 4 | <u>-49</u> | 25 | | - <u> </u> | 1,1 | 1126 | | | | -50
 | | 5,5 | -59 | - · • | | | 1.5 | | | | | | | .25 | | | 1,5 | | -20 | 1,25 | | | | | III III O | | | " | 1,5 | | <u>Ш</u>
-70 | 1.5 | -1 | | | | | | _ | | 1 | | : | | | | | | | .PIIIII | 2 | | | | | | - | | | | | | ,,, | 1,25 | | | | | | | | | | | 120. P. 120. | 1,5 | ' | | -120 | 1,5 | | | | | ĺ | | | # 6.4 Length of gauge measuring part # 6.4.1 Measuring part of GO gauges The length of measuring part of GO (plug or ring) gauges shall be at least equal to the minimum values indicated in table 7 and selected from the R 20 series of preferred numbers. The shaft GO (ring) gauge is not splined over its whole length and presents a plain cylindrical part, the diameter and tolerances of which have the same values as the major diameter \boldsymbol{D} of the gauge splines. The hole GO (plug) gauge is splined over its whole length. NOTE — The hole GO gauge may however present one (or two) plain cylindrical part(s) to ease gauge introduction in the gauged hole. Table 7 — Measuring part of GO gauges — Minimum length Dimensions in millimetres | | | | . III IIIIIIIIIIIII e | |----------------------------------|----------------------------|-------------------------|-----------------------| | Nominal
major
dlameter | GO plug
gauge
(hole) | GO i
gau
(sha | ige
ift) | | D
of splines | splined | /Inimum (engt)
total | n
splined | | 14
16 | 20 | 20 | 10 | | 20
22 | 25 | 20 | 10 | | 25
26
28
30 | 31,5 | 25 | 12,5 | | 32
34 | 40 | 28 | 14 | | 36
38
40
42 | 45 | 35,5 | 18 | | 46
48 | 50 | 45 | 22,4 | | 50
54
58
60
62
65 | 50 | 50 | 25 | | 68
72
78
82 | 50 | 56 | 28 | | 88
92
102
108 | 50 | 63 | 31,5 | | 112
120
125 | 56 | 71 | 35,5 | #### 8.4.2 Measuring part of NOT GO gauges The recommended length of the measuring part of NOT GO segmental gauges for holes or shafts has been determined taking into account of the studies undertaken within ISO by Sub-Committee 3, Dimensional metrology of ISO/TC 3 "limits and fits" (ISO 3670) concerning NOT GO plain gauges. Table 8 — Measuring part of NOT GO segmental gauges — Recommended length Dimensions in millimetres | Nominal
major
diameter
D
of splines | Recommended length
of NOT GO
segmental gauges
(for holes or shafts) | |--|--| | 14
16 | 10 | | 20
22 | 12 | | 25
26
28
30 | f4 | | 32
34
36
38
49 | 15 | | 42
46
48
50
54
58
60
62
65 | 18 | | 68
72
78
82
88
92
98
102 | . 25 | | 112
120
125 | 25 | # 6.5 Gauge chamfers On the plugs, the presence of a chamfer may be considered necessary. In no case shall the maximum value of this 45° chamfer exceed the clearance between the shaft and hub to be inspected. # 6.6 Plug handles Handles for plug gauges shall be those commonly intended for plain or screw gauges (see ISO 3670).